近日,解放军疾病预防控制中心宋宏彬研究员和李鹏副研究员团队,与中国医学科学院杨俊涛研究员团队、吴爱平研究员团队,以及军事科学院军事医学研究院李靖副研究员团队开展合作,在 Nature Machine Intelligence 期刊上发表了题为 ARNLE model identifies prevalence potential of SARS-CoV-2 variants 的文章,使用深度学习方法,建立了可量化评估新冠病毒变异株的宿主嗜性转换的基于语言嵌入的注意力递归网络模型(Attentional Recurrent Network based on Language Embedding,ARNLE),通过ARNEL模型研究发现,新冠病毒在流行过程中不断转向人类嗜性,在人群中传染性逐渐增强,致病性逐渐减弱,从而与人类宿主达到一种“共生”状态。
研究人员选择2019年12月前来源于6大类宿主(翼手目、灵长目、食肉目、偶蹄目、猪形亚目和啮齿目)的冠状病毒(不包含新冠病毒),并提取其中5个主要编码蛋白(ORF1ab、S、E、M和N)的氨基酸序列,使用ELMo语言模型建立冠状病毒蛋白质语言模型。
该研究使用当前先进的语言模型方法,通过人工智能有效学习病毒氨基酸序列特征,清晰刻画了新冠病毒从早期类似翼手目冠状病毒到后期类灵长目冠状病毒的适应性演化过程,对预测未来具有潜在流行风险的新冠病毒变异株具有重要意义。研究也强调了在病毒流行早期对其进行遏制,防止其广泛传播造成的变异适应,仍然是病毒性传染病防控的有效手段。
刘宇奇博士、李靖副研究员、李沛翰博士为本研究共同第一作者。
本文转载自公众号:iNature
中国生物物理学会官方订阅号,为BSC会员及生物物理领域专业人士服务。
投稿及授权请联系:bscoffice@bsc.org.cn。
微信号:BSC-1979