分享好友 行情首页 行情分类 切换频道
大模型背景下,智能计算发展有哪些新态势?
2024-12-21 19:40  浏览:88

  当前,智能算力需求倍增,千卡计算集群成为大模型训练标配,巨量参数、海量数据是人工智能大模型研发的必经之路。以ChatGPT为代表的多模态AI大模型成为人工智能迈向通用智能的里程碑技术,2018年—2024年OpenAI公司先后发布GPT-3.5、GPT-4、Sora等大模型,参数规模突破万亿,模型训练数据量达TB级别,应用场景覆盖文生文、文生图、文生视频等多模态计算任务。参数规模在百亿到千亿区间、训练数据TB级别以上,已成为研发具备涌现能力大模型的必备条件。

  2003年—2023年20年间智能算力需求增长百亿倍,远超摩尔定律提升速度。以ChatGPT为代表的人工智能大模型突破性进展激发全球智能计算发展热潮,大模型算力需求远超半导体增长速度,算力需求增长与芯片性能增长之间逐渐不匹配。根据公开数据测算,以AlexNet为代表的传统卷积神经网络模型训练计算量以5~7个月翻倍增长,当前基于Transformer的大模型计算量以4~5个月翻倍增长;然而芯片侧,CPU依旧延续摩尔定律以两年性能翻倍的速度发展,GPU芯片通过架构创新持续强化并行计算能力,实现十年千倍增长速度(int8算力)。现阶段,业界通过算力堆叠以及芯片、软件、互联等协同技术系统性能提升以满足大模型智能算力激增要求,千卡算力芯片构建的集群成为千亿参数大模型训练的标配。

  芯片、软件、互联等技术创新是算力提升关键

  多维度架构创新实现芯片性能倍增。与通用计算芯片不同,智能计算芯片微架构创新对其算力提升影响超过工艺制程。英伟达重视GPU微架构创新,2010年以来已累计实现9次架构升级,结合工艺升级实现了十年千倍的性能提升。最新Blackwell GPU架构内置第二代Transformer引擎和专用RAS安全引擎,全面提升计算效率和部署稳定性。第二代Transformer引擎支持微张量缩放和动态范围管理算法,扩展支持新型FP6、FP4精度计算,实现自动调整精度以达到芯片最优算力性能;RAS引擎基于人工智能的预防性维护技术完成芯片运行状态的诊断,最大化延长系统运行时间和降低运营成本。

  深度学习框架和软件栈间接口高效适配成为芯片好用的关键。深度学习框架在支撑应用开发的同时,需要完成与底层芯片软件栈的高效适配。开发框架方面,提供分布式调度、访存优化、模型并行、数据并行等开发能力,支持分布式大模型高性能训练与推理已成为框架高效应用的关键。PyTorch采用类Python语法降低使用门槛,动态计算图设计思路便于灵活调试,加快模型的训练和优化过程,是当前算法应用开发的主力产品。软件栈方面,重点强化大模型加速库能力建设,通过向用户提供易用、高效的芯片编程接口,提高开发人员的工作效率,目前已推出针对深度学习计算、优化模型推理和加速科学计算、图形计算的专用加速库,满足多样化智能计算需求。

  高速互联是大规模算力集群构建的基础。芯片间、服务器间、集群间的高速互联、无损网络能力建设,是支撑千卡、万卡智能算力集群计算需求的必备条件,英伟达新一代NVLink 5高带宽互联技术支持GPU间、GPU与Grace CPU直连,带宽从H100的900Gb/s提升到1800Gb/s,与NVLink交换机联合使用可最高支持576个GPU高速通信,是H100芯片最大直连数量的2倍,为支持万亿参数大模型训练提供基础。

  巨头蜂拥智能计算赛道

  寡头垄断与多体系并存

  计算核心企业加快智能计算产品端到端体系化布局,抢占产业生态主导权。英伟达巩固GPU芯片性能优势的同时,向CPU、服务器架构、云平台等下游渗透,借助B200、H100芯片和DGX SuperPOD计算集群主导地位开辟云服务DGX Cloud,使企业能够立即访问生成式AI应用和训练模型所需的基础设施与软件。AMD强化“CPU+GPU”双芯片战略布局,CPU方面,通过改进分支预测、增加浮点支持指令等持续迭代升级芯片性能,GPU方面,发布基于CDNA 3架构的人工智能芯片MI300A和MI300X以抢占大模型算力市场份额。英特尔围绕高性能计算优势领域,逐步向GPU、ASIC等面向人工智能技术路线的产品体系布局,推出Habana Gaudi 2、Xe GPU等产品。但从全球智能计算芯片市场的规模来看,英伟达主导地位明显,市场占有率超80%,短期内领先的市场格局不会改变。

  云平台及AI企业向底层芯片领域渗透,但仅少量自研芯片实际部署应用。谷歌、微软、亚马逊等云厂商依托云计算优势向底层芯片领域渗透。谷歌自研张量处理器芯片TPU历经五代迭代创新,于2023年8月发布新一代定制TPU v5e用于大模型训练和推理,目前已批量应用于自研LLaMA大模型训练推理任务中。微软于2023年11月发布Maia 100和Cobalt 100芯片,Maia 100专为Azure云生成式AI业务设计,提供自然语言处理、计算机视觉、推荐系统等计算服务,已在Bing和Office AI产品上完成测试;Cobalt 100是基于ARM架构的通用计算芯片,当前已为Microsoft Teams等应用提供支持;然而上述两款芯片至今仅支持微软自家云服务,尚未向合作伙伴和客户开放芯片产品供应。微软自研推理芯片Inferentia和训练芯片Trainium,2023年4月更新的Inferentia 2芯片进一步提升计算性能,通过多卡高速互联可完成千亿参数大模型推理任务。但从实际应用来看,国内外云厂商仅在有限的特定算法场景中使用自研芯片,对外提供的稳定、可靠的高性能智能算力服务均基于英伟达加速卡产品实现。

  智能计算生态软硬深度绑定发展

  计算企业均构建了与自研芯片相对应的端到端软件栈。目前国内企业均构建了与自研芯片相对应的端到端软件栈(含驱动层、编译器、加速库、工具链等),存在兼容英伟达CUDA生态和自研软件栈等技术路线。一方面,英特尔、AMD等企业在工具链API接口协议等方面与CUDA对应一致,便于把CUDA程序快速迁移到自研GPU硬件平台,降低芯片应用门槛,满足不同应用开发及调试需求。另一方面,谷歌自研TPU芯片应用时,自研软件栈编译器等工具,针对特定算法应用进行优化,实现处理效率和性能的提升。

    以上就是本篇文章【大模型背景下,智能计算发展有哪些新态势?】的全部内容了,欢迎阅览 ! 文章地址:http://w.yusign.com/quote/2538.html 
     行业      资讯      企业新闻      行情      企业黄页      同类资讯      网站地图      返回首页 述古往 http://w.yusign.com/mobile/ , 查看更多   
最新新闻
微信视频号直播广告如何投放
我们现在发现很多企业做微信视频号的直播都要投广告了,没错,通过广告定向投放人群能将精准客户吸引到直播间,再通过主播的带货
IE浏览器软件哪个好 常用的IE浏览器软件排行
在这篇文章中,我们将深入探讨IE浏览器软件的热门选择及其在市场上的常用排行。无论是经典版本还是后续更新,你会了解到哪些浏览
Windows Phone 上的触控手势
下载代码示例当然,对于一种相对仍很年轻的技术来说,存在这么多的触控 API 也不足为奇。而且,多点触控比鼠标要复杂得多。这部
六年级上册16课夏天里的成长评课稿听课记录
六年级上册16课夏天里的成长评课稿听课记录一、读单元页,明确任务师:今天我们来学习第五单元,第五单元是一个习作单元。在这一
影视解说文案自动生成器-影视解说文案自动生成器2.50
在数字化时代的浪潮下,影视行业迎来了前所未有的发展机遇。随着影视作品的增多,怎样为这些作品打造出引人入胜的解说文案,成为
适合发朋友圈的句子大全11篇
【#好词好句# #适合发朋友圈的句子大全11篇#】旅行可以放松自己的心情,宽阔自己的心境,忘掉不顺心,迎接新的开心。旅行是在寻
从零开始学OPERA操作系统
1、房间查找 包括以下内容房间的状态分10种类型所有房间干净,经主管检查有问题,待查房干净房脏房一 快捷键的操作1 F1 OPERA HE
生成式AI为高级分析提供了新的可能性
生成式人工智能(genai) 的出现为工业过程分析带来了令人兴奋的新前景。这项变革性技术可以根据用户的提示生成新的文本、代码和图
阿里P9的真实生活!年薪300万却活得像穷人,依然生活在温饱线上……
  阿里巴巴是许多人梦想的工作地方。  在阿里,P9的年薪甚至高达300万。  他说,他的生活标准,其实并不高,只是跟随着收
本企业新闻
推荐企业新闻
发表评论
0评