深度网络数据编码新突破,上交大SPARK登上计算机体系结构顶会

   日期:2024-12-24     作者:xhb273511       评论:0    移动:http://w.yusign.com/mobile/news/2503.html
核心提示:随着深度神经网络(DNNs)模型在规模和复杂性上的迅速增长,传统的神经网络处理方法面临着严峻的挑战。现有的神经网络压缩技术在

随着深度神经网络(DNNs)模型在规模和复杂性上的迅速增长,传统的神经网络处理方法面临着严峻的挑战。现有的神经网络压缩技术在处理参数规模大、精度要求高的神经网络模型时效率低下,无法满足现有应用的需求。

数值量化是神经网络模型压缩的一种有效手段。在模型推理过程中,低位宽(比特)数据的存取和计算可以大幅度节省存储空间、访存带宽与计算负载,从而降低推理延迟和能耗。当前,大多数量化技术的位宽在 8bit。更为激进的量化算法,必须要修改硬件的操作粒度与数据流特征,才能在真实推理时获得接近理论的收益。比如混合精度量化,激活数据的量化等方案。一方面,这些方案会显式增加 book-keeping 存储开销和硬件逻辑,使得实际收益下降 [1,2,3]。另一方面,一些方案利用分布特征对量化范围和粒度做约束,来减小上述硬件开销 [4,5]。但其精度损失也受到不同模型和参数分布的影响,无法满足现有应用的需求。

  • 固有比特冗余:SPARK 不对模型进行压缩,而是剔除数据表示中固有的比特冗余,与现有的压缩方案正交,可以协同使用。

  • 变长编码方案:SPARK 创新了变长数据表示格式,有效压缩模型大小,不需要增加额外的 book-keeping(如 index 等)代价(如硬件,访问与更新延迟)。该编码方案对模型参数与激活值同样适用。

  • 硬件兼容性:SPARK 不需要修改硬件加速器微架构(如:脉动阵列),不会引入额外的设计复杂性,可行性较高。

  • 平衡精度与效率:在大型模型中,SPARK 通过其高效的编码机制,不仅提升了处理速度,还精确地保持了模型的准确性。与其他同类型加速器相比平均获得了 4.65 倍的加速,降低了 74.7% 的能耗。

研究动机

主要方法

在 SPARK 中,本工作只简单地用最高位作为指示符区分高 / 低精度数据,而不同于其他分离尾数域和指数域的复杂编码策略。同时,模型训练时就可以模拟该编码行为,而不用进行训练后微调来补偿由量化带来的精度损失。

编码方案及电路设计

该工作以 INT8 量化为例,每个数据为 8bit unsigned 整型。原始数据的编码表示为(b0, b1, b2, b3, b4, b5, b6, b7),具体的编码原则如图 2 所示。

1. 当原编码中只有b4b7 这低 4 位包含非零有效位时,直接进行低精度无损编码,缩短为 4bit,其中最高位 C4 是指示符位,设为 0。

2. 当原编码中 b0-b3这高 4 位也包含非零有效位时,进行高精度编码。其中,最高位 c0 为指示符位,设为 1。之后,视 b0 异或 b3 的结果,决定是否进行有损近似编码或无损编码。

a) 当原数值范围在 [8, 127],即 b3-b1 位包含非零有效位时,最高位的指示符位不作为数值位计算。当 b3 位为 1 时,在编码阶段将 b3 位设为 0 并将低 4 位 C4-C7补偿为 1111。虽然,这一步是有损的,但由于补偿效应、损失精度较小。

b) 当原数值范围在 [128, 255],即 b7-b0 位这 8 位都包含非零有效位时,最高位的指示符位作为数值位计算。b3 位为 0 时,在编码阶段将 b3 位设为 1 并将低 4 位 C4-C7补偿为 0000。

本工作设计了一个硬件友好的解码方案,下面将阐述如何将编码转换为十进制值。首先,本工作假定大端序存储(Big Endian),解码时输入位宽为 4bit,使能信号 1 位。

解码器电路需要的硬件模块为熟知的多路选择器,或门和非门。具体实现如图 4 所示,解码器每个周期读入 4bit 数据和使能信号。

当使能信号为 1,则指该输入是高精度值得后半部分编码;当使能信号为 0 时,若 c0 = 0,则判定输入是低精度值直接输出 c0c1c2c为解码值,若 c0 = 1 则根据 c3 判定将指示符位作为数值位计算。公式 3 阐述了具体的判定规则,图 4 是解码器的电路设计图。

SPARK 可以与常用的张量运算核心(脉动阵列,乘加树等)很好的兼容。如图 5 所示,解码器放置在 weight buffer 与 PE 之间,在参数灌入 PE 阵列之前解码;同样也放置在 Activation Buffer 与 PE 之间,在激活值灌入 PE 阵列之前解码。编码则分为两部分。对于参数的编码可以离线进行,在 DRAM 中直接存储已经编码压缩后的参数。在线硬件编码器则放置在 PE 计算完产生 Activation 之后。

文章使用 CNN-based 和 attention-based 的模型簇进行实验,在 ImageNet 数据集上测试了 VGG-16,ResNet-18,ResNet-50 网络,在 GLUE 数据集上测试 BERT-based 模型,以及 ViT 模型。与 SPARK 进行对比的 baseline 架构有:Eyeriss [6], BitFusion [7], OLAccel [1], ANT [8], Olive [9]。

模型准确性评估

结语

SPARK 利用数据表示中的比特冗余,结合高效的编解码方案,使得 AI 模型在保证精度需求的情况下,利用本就存在的比特稀疏,这对于计算、存储、传输都带来了巨大的开销节省。在处理越来越大的模型时,SPARK 展现出了其独特的优势。它不仅能够处理大规模数据,还能在精度极其敏感的场景下保持高效率。这一点对于现在 AI 应用尤为关键,如自动驾驶、医学诊断和语言处理等。

在未来,这套编码方法还可以进一步扩展到交换芯片,存储盘控芯片等关键位置,用于优化 AI 数据中心的通信瓶颈。

这一工作由上海交大先进计算机体系结构实验室蒋力教授课题组(IMPACT)完成,同时也获得了上海期智研究院的支持。第一作者是刘方鑫教授与博士生杨宁。

参考文献

[1] Park, Eunhyeok, Dongyoung Kim, and Sungjoo Yoo. "Energy-efficient neural network accelerator based on outlier-aware low-precision computation." 2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA). IEEE, 2018.

[2] Zadeh, Ali Hadi, et al. "Gobo: Quantizing attention-based nlp models for low latency and energy efficient inference." 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE, 2020.

[3] Guo, Cong, et al. "OliVe: Accelerating Large Language Models via Hardware-friendly Outlier-Victim Pair Quantization." Proceedings of the 50th Annual International Symposium on Computer Architecture. 2023.

[4] Song, Zhuoran, et al. "Drq: dynamic region-based quantization for deep neural network acceleration." 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA). IEEE, 2020.

[5] Jain, Shubham, et al. "BiScaled-DNN: Quantizing long-tailed datastructures with two scale factors for deep neural networks." Proceedings of the 56th Annual Design Automation Conference 2019. 

[6] Y. -H. Chen, T. Krishna, J. S. Emer and V. Sze, "Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural Networks," in IEEE Journal of Solid-State Circuits, vol. 52, no. 1, pp. 127-138, Jan. 2017.

[7] H. Sharma et al., "Bit Fusion: Bit-Level Dynamically Composable Architecture for Accelerating Deep Neural Network," 2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA), Los Angeles, CA, USA, 2018, pp. 764-775.

[8] C. Guo et al., "ANT: Exploiting Adaptive Numerical Data Type for Low-bit Deep Neural Network Quantization," 2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO), Chicago, IL, USA, 2022, pp. 1414-1433.

     本文地址:http://w.yusign.com/news/2503.html    述古往 http://w.yusign.com/static/ , 查看更多
 
特别提示:本信息由相关用户自行提供,真实性未证实,仅供参考。请谨慎采用,风险自负。

举报收藏 0打赏 0评论 0
 
更多>同类资讯
0相关评论

相关文章
最新文章
推荐文章
推荐图文
资讯
点击排行
{
网站首页  |  关于我们  |  联系方式  |  用户协议  |  隐私政策  |  版权声明  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  网站留言  |  RSS订阅  |  违规举报  |  鄂ICP备2020018471号