-
论文标题: Practical Compact Deep Compressed Sensing(实用、紧致的深度压缩感知)
-
论文作者: Bin Chen(陈斌) and Jian Zhang†(张健)(†通讯作者)
-
作者单位: 北京大学信息工程学院
-
发表刊物: IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)
-
发表时间: 2024年11月22日
-
正式版本: https://ieeexplore.ieee.org/document/10763443
-
ArXiv版本: https://arxiv.org/abs/2411.13081
-
开源代码: https://github.com/Guaishou74851/PCNet
压缩感知(Compressed Sensing, CS)是一种信号降采样技术,可大幅节省图像获取成本。CS的核心思想是 “无需完整记录图像信息,通过计算即可还原目标图像”。CS的典型应用包括:
-
降低相机成本: 利用廉价设备就能拍摄出高质量图像;
-
加速医疗成像: 将核磁共振成像(MRI)时间从40分钟缩短至10分钟内,减少被检查者的不适;
-
探索未知世界,助力科学研究: 将“看不见”事物变为“看得见”,如观测细胞活动等转瞬即逝的微观现象,以及通过分布式射电望远镜观测银河系中心的黑洞。
CS的数学模型可表示为 ,其中 是原始图像, 是采样矩阵, 是观测值。定义压缩采样率为 。
CS面临两大核心问题:
-
如何设计采样矩阵,从而尽可能多地保留图像信息?
-
如何设计高效的重建算法,从而精准复原图像内容?
然而,现有CS方法仍存在两方面局限:
-
采样矩阵信息保留能力不足: 将图像切块,逐块采样,导致观测值信息量有限;
-
重建算法的计算开销过大、复原精度有限。
本工作提出了一种实用、紧致的图像压缩感知网络PCNet,具有如下创新点:
-
**一种新型压缩采样矩阵,**能够融合图像的局部与全局特征,从而提高信息保留能力。具体采样过程分两步:首先,用一个小型卷积网络对图像滤波;其次,使用全局矩阵对滤波结果降维,生成压缩观测值;
-
**一种新型图像重建网络,**将传统近端梯度下降(Proximal Gradient Descent,PGD)算法与深度神经网络有机结合,利用先进模块设计显著提升重建精度。
图1:提出的实用、紧致的压缩感知网络PCNet。
图2:提出的协同采样算子。
在 Set11、CBSD68、Urban100 和 DIV2K 等基准数据集上,PCNet 的性能显著优于其他方法,特别是在高分辨率(2K、4K、8K)成像任务中。此外,其采样矩阵可拓展至量化CS和自监督CS任务,展现了良好的通用性。
图3:方法与其他CS方法的对比结果。
更多细节、实验结果与理论分析请参阅论文。
视觉信息智能学习实验室(VILLA)由北京大学信息工程学院张健助理教授于2019年创立并负责,主要围绕“智能可控图像生成”这一前沿领域,深入开展高效图像重建、可控图像生成和精准图像编辑三个关键方向的研究。张健老师带领VILLA团队已在Nature子刊Communications Engineering、IEEE SPM、TPAMI、TIP、IJCV、NeurIPS、ICLR、CVPR、ICCV和ECCV等高水平国际期刊和会议上发表论文100余篇,其中近三年,以第一作者/通讯作者发表CCF A类论文40余篇。张健老师谷歌学术引用1万余次,h-index值为49(单篇一作最高引用1200余次),获得北大青年教师教学比赛一等奖、国际期刊/会议最佳论文奖五次,主持国家科技重大专项课题、国自然重点项目课题、国自然面上以及与字节/华为/OPPO/创维/兔展等知名企业学术合作项目10余项。
在高效图像重建方面,张健老师团队的代表性成果包括优化启发式深度展开重建网络ISTA-Net、COAST、ISTA-Net++,联合学习采样矩阵压缩计算成像方法OPINE-Net、PUERT、CASNet、HerosNet、PCA-CASSI,基于信息流增强机制的高通量广义优化启发式深度展开重建网络HiTDUN、SODAS-Net、MAPUN、DGUNet、SCI3D、PRL、OCTUF、D3C2-Net,以及无需真值的自监督图像重建方法SCNet。团队还提出了基于自适应路径选择机制的动态重建网络DPC-DUN和用于单像素显微荧光计算成像的深度压缩共聚焦显微镜DCCM,以及生成式图像复原方法Panini-Net、PDN、DEAR-GAN、DDNM,受邀在信号处理领域旗舰期刊SPM发表专题综述论文。本工作提出的实用、紧致的压缩感知网络PCNet进一步提升了图像压缩感知的精度与效率。
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习